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Abstract 

This paper presents modelling techniques for addressing three data reliability issues encountered 

in the City of Winnipeg safety performance functions (SPF) and network screening project: (A) 

uncertain traffic volume data, (B) non-uniform collision under-reporting linked to segment length, 

and, (C) missing traffic volume data for minor roads of an intersection. The first issue relates to 

uncertain traffic traffic volume data. The City of Winnipeg uses short-term count stations and has 

a form of traffic data known as the weekday average daily traffic (WADT). The issue of data 

uncertainty is addressed by estimating the amount of error in the volume data that goes into the 

SPF and accounting for this error in the SPF development using a Monte Carlo-based modelling 

approach. The simulation approach maps traffic volume uncertainty to SPF parameter 

uncertainty. The second issue relates to non-uniform under-reporting linked to segment length. 

The non-uniform under-reporting of segment collisions resulted in a global and localized model 

bias. We introduce a new technique to detect, quantify, and correct this bias by using residuals 

analysis to stratify the population.  The third issue relates to modelling intersections with missing 

minor street flow volumes.  We apply an approach that uses the functional class of the 

intersections as proxies for the missing flow volumes. For each issue, we demonstrate 

quantitatively that good modelling results can be obtained despite input data limitations. Key 

conclusions are: (A) for traffic volume measurement errors of up to 30%, Monte Carlo analysis 

shows that the ability to create reliable SPFs is not affected; (B) residuals analysis to stratify a 

population according to non-uniform under-reporting can essentially eliminate global and local 

model bias, and (C) using a readily available proxy for a missing predictor variable can improve 

predictive ability by almost 50% (measured by mean absolute deviation) when compared to 

omitting that predictor variable entirely. 

1. Introduction 

Safety performance functions (SPFs) are mathematical models that predict the expected 

frequency of collisions together with its variance occurring for a given road facility as a function of 

traffic volumes and other relevant potential road attributes. SPFs primarily serve a network 

screening purpose to aid in the detection of high risk collision prone locations in a road network 

(Hauer, Kononov, Allery, & Griffith, 2002). SPFs have many other functions such as interactive 

design support (Ng & Sayed, 2004), countermeasure selection analysis (Li, Carriquiry, Pawlovich, 

& Welch, 2008), and before-and-after treatment evaluations (Persaud & Lyon, 2007). The use of 

SPFs is a core component of Advanced General Purpose Network Screening as defined by the 

Transportation Association of Canada, which many urban and provincial jurisdictions are currently 

adopting or have already adopted. SPFs are also foundational to the AASHTO Highway Safety 

Manual. 

Despite the significant role of SPFs in network screening, questions regarding data reliability and 

data limitation issues can cause professionals to question screening results or the merit of 

developing an SPF-based screening program. To our knowledge, research on the impact that 

data limitations bring to SPFs and network screening results has been very limited. Real traffic 

volume data most often has to be estimated from low quality data, for this reason,  the precision 



of the estimated collisions are affected (Davis, 2000). El-Basyouny and Sayed (El-Basyouny & 

Sayed, 2010) proposed a measurement error negative binomial approach which reduces the bias 

in predicted crashes when traffic volumes have measurement uncertainties, however, the extent 

of influence of measurement error in traffic flow volumes on parameter robustness and reliability 

have rarely been discussed in the literature.   

Under-reporting bias is an issue that is commonly discussed but not significantly explored in terms 

of SPF impact. If the bias is uniform, it can be either ignored in screening or accounted for with a 

scaling parameter. However, if the bias is non-uniform across time or the network, the modelling 

response is more complicated.  In capturing the segment data for the City of Winnipeg SPF 

project, segment collisions were under reported to a higher degree for relatively shorter segments. 

This unique data recording challenge introduced model bias as collision count under reporting 

varied with respect to segment length. 

The standard practice in modelling intersection collisions has been to use both the minor and 

major traffic flow volumes as explanatory variables, usually the model form usually expressing 

them as some kind of product to account for the quantity of potential conflicts.  In Winnipeg, as is 

the case with many jurisdictions, the traffic count information for the minor road intersection is 

often not available.  Information on how to model intersections with complete flow volume 

information abound in the literature (Dixon et al., 2015; Lyon, Haq, Persaud, & Kodama, 2005). 

Dixon et al. (2015) present approaches to estimate the minor street volume using other auxilliary 

information based on data collected as part of the SPF development. However, in the absence of 

the relevant data required for estimating the minor street volume, there has not been any 

extensive documentation in the literature that we know of on how to treat intersections with only 

one street volume.   

This study proposes a methodology that addresses data reliability issues by quantifying the 

amount of error in the volume data that goes into the SPF and accounting for this error in the SPF 

development using a Monte Carlo-based modelling approach. The simulation based approach 

maps traffic volume uncertainty to SPF parameter reliability. In the situation of non-uniform under-

reporting, we propose a method that quantifies the model bias present and introduce a new 

modelling strategy that accounts for the range of segment length in the model structure. The 

cumulative residual plot is used to monitor the bias correction. For intersections with missing 

street volumes, we propose a functional class modelling approach which uses the class of the 

intersection as a proxy for the unknown traffic flow volume information.  The impact of the 

functional class model approach on predictive ability is assessed by comparing the proposed 

approach with the standard approach by emulating the statistical tests for model validation in 

(Young, Park, & Eng, 2012).  

2. Objectives, Scope, and Organization of Paper 

The geographic scope of the paper consists of SPFs developed for the City of Winnipeg regional 

street network. The temporal scope consists of collision data from 2012 and 2013. The modelling 

covered 2374 segments, and 580 intersections with only one street volume. This paper is meant 

to provide a high level overview for practitioners of the three techniques to deal with uncertainty 

and not an in-depth proof of the techniques for the academic community, so complex modelling 

jargon is kept to a minimum. The overall objective is to describe how, with the right techniques, 

confident decisions can be made even when the input data has serious limitations. The rest of 

the paper is organized according to the three data issues considered. Each issue has its own 



methodology, results, and sub-conclusion. After the three sections dealing with individual data 

issues, and concluding discussion is provided.  

3.  Data Issue A - Uncertainty in Traffic Volume Data 

 

3.1. Methodology 

 

3.1.1. Methodology for Model Form 

A typical intersection SPF model form is given below: 

𝑁𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 𝛽0 × 𝑉1
𝛽1 ×  𝑉2

𝛽2 +  𝜀 

where 𝑁𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛  denotes the predicted counts of collisions, 𝑉1 the minor street volume for the 

intersection under consideration and  𝑉2  the major street volume. The estimable parameters of 

the model are 𝛽0 , 𝛽1  and 𝛽2 , and 𝜀 denotes the error associated with the model which is assumed 

to have a negative binomial error structure.  We used this model form for this study. 

3.1.2. Methodology for Introduction of measurement error 

Monte Carlo (𝑀𝐶) simulation is a statistical routine that generates artificial samples in a random 

manner using a set of parameter specifications. The statistical technique was used by (Torres, 

Lechón, & Soto, 2012) to toggle between different scenarios of traffic accident paths and public 

strategies to understand how traffic accidents evolve with time. (Miranda-Moreno, Lord, & Fu, 

2008) also used 𝑀𝐶 to determine the best way of incorporating prior information in road safety 

analysis. The original data considered for the study was assumed to be the ideal data with error 

free traffic flow volumes. An established level of measurement error was introduced in the flow 

volumes of the original data to create a new data with known level of induced measurement error 

using the random truncated normal distribution. 

The data perturbation was done using the random truncated normal distribution function rtnorm() 

in the msm package in R (Jackson & Jackson, 2015). The truncated normal distribution with a 

minimum truncation point at zero  was used to describe the random variation in the traffic flow 

volumes (Burkardt, 2014). The rtnorm() function requires three arguments, namely:  the sample 

size, the mean and the standard deviation. We supply the mean to be the original traffic volume 

and the standard deviation to be a proportion (𝜀)  of the original traffic volume. The  𝜀 considered 

ranged from 5% to 50% of the original traffic volume in steps of 5% making ten in all for the 

different data scenarios considered.  For any original traffic volume, we generate a new traffic 

volume from the truncated normal distribution with a sample size of one, and with mean that is 

equal to the original traffic volume that we seek to perturb, and standard deviation that is equal to 

a proportion of the original traffic volume. This perturbation of the original traffic volumes was 

carried out for each traffic volume in the original data whilst maintaining the number of collision 

counts. A model fit was then obtained based on the new sample with perturbed traffic volumes 

and the results stored in R. This simulation process was repeated 500 times with all the estimates 

of the parameters obtained and stored in R.  Different cases of the sample size were considered 

to determine the effect of sample size on parameter reliability. In the first simulation process we 

considered the whole sample size, then only 75%, 50%, 25%, 20%, 15%, 10% and 5%. In all, for 

each reference SPF, we re-estimated that SPF 40,000 times (10 measurement error levels)x(8 

sample size levels)X(500 MC simulations), recording the change in SPF parameters each time.  



3.1.3.  Methodology for measurement error evaluation 

 To assess the impact of the introduced traffic volume measurement errors on the estimated 

parameters in the SPF, we define the traffic volume uncertainty multiple, which is the ratio of the 

sample standard deviation in the estimates generated from the Measurement Error Monte Carlo 

(𝑀𝐸𝑀𝐶) samples to the standard error inherent in the corresponding estimate for the reference 

single model (𝑆𝐼𝑀).   

 

Traffic uncertainty multiple(UM)  =  
𝑆. 𝐷(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠)𝑀𝐸𝑀𝐶

𝑆. 𝐸(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒)𝑆𝐼𝑀

 

When 𝑈𝑀 < 1 it suggest the mapped uncertainty from flow volumes is less than the uncertainty 

already existing in the model with reference (perfect) volumes. 

3.1.5. Methodology for Assessing Precision  

 

To assess the precision of estimates when traffic volume measurement error is introduced we 

use the root mean square error(𝑅𝑀𝑆𝐸).  We compare the   (𝑅𝑀𝑆𝐸)  based on the model using 

the original data with perfect volumes and the average 𝑅𝑀𝑆𝐸  based on the Monte Carlo induced 

measurement error samples. We denote the average 𝑅𝑀𝑆𝐸 as 𝐴𝑅𝑀𝑆𝐸 . The 𝑅𝑀𝑆𝐸 and the 

𝐴𝑅𝑀𝑆𝐸 are defined as 𝑅𝑀𝑆𝐸 = √ 
1

𝑛
 ∑ (𝑁�̂� − 𝑁𝑖)

2𝑛
𝑖=1   and  𝐴𝑅𝑀𝑆𝐸 =

∑ 𝑅𝑀𝑆𝐸𝑖
500
𝑖=1

500
  respectively  where 

𝑁𝑖  and 𝑁�̂�  denotes the observed and predicted collision counts respectively, 𝑛 represents the 

sample size and 𝑅𝑀𝑆𝐸𝑖 is the root mean square error obtained from the 𝑖 − 𝑡ℎ simulation. 

3.2. Results for addressing uncertainty in traffic volume data with Monte Carlo 

simulations 

The results of the traffic volume uncertainty assessment are presented in two parts. First, a set of 

uncertainty multiple graphs are presented (graphs for the other sample scenarios are presented 

in the appendix). Second, two tables that assess the effect of sample size on uncertainty are also 

presented. The graphs show how for lower sample sizes or for higher traffic volume uncertainty, 

the degree of uncertainty caused by traffic volume errors goes up but is always much less than 

the degree of uncertainty that is already inherent in the model. 

 

 

 

 

 

 

 

 

 



Figure 1:  Traffic uncertainty multiple (𝑼𝑴) against traffic volume measurement error (𝜺) 

for intersections. 

 

Notes: 𝑛 denotes the sample size and   
𝑆.𝐷(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠)𝑀𝐸𝑀𝐶

𝑆.𝐸(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒)𝑆𝐼𝑀
 is the traffic volume uncertainty multiple. 𝑀𝐸𝑀𝐶 indicates 

measurement error Monte Carlo samples. 𝑆𝐼𝑀 indicates the single model based on original data and 𝜀 is the traffic 

volume measurement error. The intersection model has the form  𝑁𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 𝛽0 × 𝑉1
𝛽1 ×  𝑉2

𝛽2 + 𝜀𝑚, where  

𝑁𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛  denotes the predicted counts of collisions, 𝑉1 the minor street volume for the intersection under 

consideration, 𝑉2  the major street volume.



Table 1:  The parameter estimates with their standard errors and root mean square error 

based on the single data model. 

 

Notes: RMSE=Root mean square error, 𝛽0̂= estimate of parameter 𝛽0, SE=Standard error 

 

Table 2: The average root mean square errors for the different error levels and for each 
sample size.  

Traffic volume 
measurement  
error (𝜀) in % 

                                                  RMSE by Sample size (𝑛) 
 

402 302 201 101 80 60 40 20 

5 0.6612 0.6325 0.5526 0.5248 0.5284 0.5250 0.5863 0.4825 

10 0.6582 0.6325 0.5614 0.5312 0.5361 0.5318 0.5943 0.4904 

15 0.6566 0.6305 0.5762 0.5410 0.5473 0.5464 0.6044 0.5057 

20 0.6646 0.6377 0.5972 0.5587 0.5613 0.5611 0.6220 0.5243 

25 0.6849 0.6781 0.6298 0.5802 0.5824 0.5799 0.6425 0.5458 

30 0.7262 0.6946 0.6743 0.6058 0.6085 0.6124 0.6681 0.5699 

35 0.7817 0.7552 0.7138 0.6296 0.6353 0.6427 0.6941 0.6026 

40 0.8203 0.8080 0.7554 0.6526 0.6572 0.6652 0.7156 0.6225 

45 0.8576 0.8425 0.7782 0.6652 0.6718 0.6730 0.7266 0.6378 

50 0.8736 0.8588 0.8022 0.6758 0.6816 0.6947 0.7418 0.6619 

Note: RMSE=Root mean square error 

 

3.3. Sub conclusion for addressing uncertainty in traffic volume data with Monte Carlo 

simulations 

Figure 1 shows a graph of mapped uncertainty multiple against input measurement error levels. 

The three graphs represent the SPF parameters 𝛽0, 𝛽1 and 𝛽2.  The response of each of the 

parameters to uncertainty in flow volumes is the same. The graph shows the uncertainty multiple 

for is less than one for traffic data errors of up to about 30%, meaning that up to this point, the 

uncertainty inherent in the parameters themselves is bigger than the possible uncertainty that 

may arise as a result of measurement errors in flow volumes. Table 1 reports RMSE for the model 

with reference flow volumes and Table 2 report the ARMSE for the different input measurement 

Sample size (𝑛) 𝑅𝑀𝑆𝐸 𝛽0̂ 𝑆𝐸(𝛽0̂) 𝛽1̂ 𝑆𝐸(𝛽1̂) 𝛽2̂ 𝑆𝐸(𝛽2̂) 

402 0.6623 -9.819 0.6650 0.5484 0.0409 0.8216 0.0649 

302 0.6336 -9.430 0.7112 0.5829 0.0447 0.7574 0.0714 

201 0.5498 -9.895 0.8873 0.6286 0.0744 0.7649 0.0957 

101 0.5228 -9.428 1.3190 0.6616 0.1156 0.6957 0.1230 

80 0.5262 -9.567 1.4236 0.6522 0.1230 0.7219 0.1376 

60 0.5219 -10.743 1.5229 0.6505 0.1350 0.8454 0.1601 

40 0.5848 -10.936 1.9648 0.6055 0.1826 0.9026 0.2150 

20 0.4799 -12.428 2.2434 0.3164 0.2141 1.3257 0.2838 



error levels for each sample size considered. Even with an input measurement error level as high 

as 30%, the prediction precision of the MEMC model is not very different from the reference 

model. From this analysis, we can conclude that existence of significant measurement errors in 

traffic flow volumes does not necessarily impede the development of reliable SPFs. 

4. Data Issue B – Non-Uniform Under-Reporting of Segment Collisions 

Collision data locations in Winnipeg are coded manually by data technicians working for a public 

insurance agency based on reports given by either the police or the parties involved. City of 

Winnipeg staff subsequently accept or reject each record based on the quality of the location 

information. This process is inherently subject to error through no fault of either agency or 

technicians in the agencies. As a result of this process, collision data in Winnipeg is subject to 

three kinds of under-reporting: 

 Under-reporting of collisions where neither the police nor the public insurance company 

was notified. This under-reporting is assumed to be uniform throughout the network. 

 Under-reporting of collisions arising from rejection of records due to location information 

upon transfer from the public insurer to the City of Winnipeg. This under-reporting is 

assumed to be uniform throughout the network. 

 Under-reporting of collisions at specific locations where, due to artifacts of the network 

segmentation and the nature of the interaction between data analysts and involved parties 

when describing a collision location. This under-reporting is non-uniform throughout the 

network and depends on segment length. We found a tendency for collisions to be 

assigned to a neighbouring segment or intersection that increases as segment length 

decreased. 

The third type of under-reporting introduces a level of non-homogeneity in the data. As a result, 

when the population is analyzed as a whole, various forms of model bias are manifested. The 

techniques presented here show a way to detect and reduce this bias. 

4.1. Methodology 

The basic functional form for predicting segment collisions has the form, 

𝑁𝑖 = 𝛽0 × (𝑊𝐴𝐷𝑇𝑖)𝛽1 × 𝐿𝑖 + 𝜀𝑖 

where 𝜀𝑖  denotes the errors of the predictive model (SPF), 𝑊𝐴𝐷𝑇 the weekly average daily flow 

of traffic, 𝐿𝑖 the segment length, 𝑁𝑖 collision count with 𝛽0 and 𝛽1 being the estimable parameters 

of the model. The 𝜀𝑖 's are assumed to have a negative binomial error structure.  In calculating the 

residuals 𝜀𝑖  of the model, we correct for possible systematic bias that may arise as a result of non-

homogeneity of the data by a positive term 𝐶𝐹. The 𝐶𝐹 may also be viewed as a calibration factor 

that becomes necessary for the functional form of the model adopted. We define 𝐶𝐹 as 

𝐶𝐹 =
∑ 𝑁𝑖

𝑛
𝑖=1

∑ 𝐸(𝑁𝑖)𝑛
𝑖=1

 

The 𝐶𝐹 can be used to adjust the predicted counts up when there is under prediction and down 

when there is over prediction respectively. This regulatory behavior of the 𝐶𝐹 stabilizes the 

residuals. The 𝐶𝐹 is a measure of the global systematic bias in a model in that if 𝐶𝐹 < 1 then 

global model over prediction bias is present and when 𝐶𝐹 > 1 model under prediction bias is 

present. Thus the extent of departure of the 𝐶𝐹 from 1 is a measure of bias introduced in the 



model; we have found that large departures from 1 (e.g. a CF of 0.8) obtained in exploratory 

modelling are often an indicator of population non-homogeneity and the departures can be 

reduced by identifying sub-populations and modelling accordingly.  

We adopt a modelling strategy that takes into account the range of the segment length being 

considered by finding population breakpoints using cumulative residual (CURE) plots. The ranges 

of segment length were chosen such that satisfactory CURE plots were obtained against 𝑊𝐴𝐷𝑇 

and segment length  𝐿.  Hauer and Bamfo (Hauer & Bamfo, 1997) demonstrate how CURE plots 

can be applied to safety performance functions, and a brief summary relevant to the current paper 

is provided here. Every data point used to fit the model has a corresponding residual equal to the 

observed value minus the fitted value. If the observation is less than the fitted value, the model 

over-predicted for that data point and the residual will be negative. In the same way, a positive 

residual indicates a case of under-prediction. To develop a CURE plot, we sort all data points and 

their residuals in the order of any given predictor variable (e.g. length or volume) and for each 

data point, we calculate the cumulative sum of all residuals up to that point. The cumulative sum 

of residuals plotted against the predictor variable is the CURE plot. If the model is unbiased, the 

CURE plot will oscillate around zero as over-predictions are typically followed by under-

predictions of a similar magnitude on a random basis. When the CURE plot trends upwards or 

downwards, it signifies bias towards under prediction or over-prediction, respectively, along the 

range of the explanatory variable for which the trend is demonstrated.  Figure 2 shows an example 

of a bad CURE plot that reveals a severe global over prediction bias as well as a good CURE plot 

that, despite some mild trends, shows a relatively bias-free model.  

Figure 2: Example of a good and bad CURE plot 

Our initial modelling for segment data showed areas of global and localized bias. We divided all 

the all the road segments in the street network into mutually exclusive categories such that each 

category considered on its own with its corresponding collision data provided a satisfactory CURE 

plot against 𝑊𝐴𝐷𝑇 and  𝐿 . Generally, suppose 𝑅1, 𝑅2, 𝑅3, … . , 𝑅𝑛 are the ranges of segment 

lengths adopted, then the desired modelling procedure suggests, 

𝑙𝑜𝑔𝑁𝑖 = 𝛽0 + 𝛽1𝑅1 + 𝛽2𝑅2+, … … . +𝛽𝑛−1𝑅𝑛−1 + log(𝑊𝐴𝐷𝑇𝑖) + 𝑜𝑓𝑓𝑠𝑒𝑡(𝐿𝑖) + 𝜀 



𝑁�̂� = 𝛽0̃ × 𝑊𝐴𝐷𝑇𝑖
𝛽𝑛 ×  𝐿𝑖 × exp (𝛽1𝑅1 + 𝛽2𝑅2+ , … … . +𝛽𝑛−1𝑅𝑛−1) 

where 𝛽0̃ = exp(𝛽0). This model form is the basic segment model structure but now augmented 

with an additional multiplicative term that adjusts the estimated number of collisions accordingly 

depending on the range of segment length being considered. The condition 𝑅1 + 𝑅2 + ⋯ + 𝑅𝑛 =

1 is always satisfied and the estimable parameters of the model are  𝛽0 ,𝛽1, 𝛽2,……..,𝛽𝑛−1 and  𝛽𝑛. 

Eight ranges  𝑅1, 𝑅2, … . . , 𝑅8 were considered for the segments data in the Winnipeg SPF project. 

In the simple case where only eight ranges are considered the general model form reduced to the 

simple case: 

𝑁�̂� = 𝛽0̃ × 𝑊𝐴𝐷𝑇𝑖
𝛽8 × 𝐿𝑖 × exp (𝛽1𝑅1 + 𝛽2𝑅2+ , … … . +𝛽7𝑅7) 

4.2. Results for Non-Uniform Under-Reporting of Segment Collisions 

We obtained a model based on the basic functional form for segment collisions. The modelling 

was repeated using the segment model with population stratification. Table 3 shows the 

parameter estimates for the two modelling approaches, and Figures 3 and 4 show the resulting 

CURE plots. The CF is .7840 in the un-stratified model, which shows a large global over prediction 

bias, and is .9996 in the stratified model, which shows almost no global bias. The CURE plots 

likewise show a major reduction of bias by stratifying the models according to segment length.  

Table 3. Estimated parameters for the un-stratified model with the 𝑪𝑭 value 

Nature of 
population 

𝛽0̂ 𝛽1̂ 𝐶𝐹 Sample size 

Un-stratified -4.4427 0.5668 0.7840 2374 

Notes: CF= Calibration factor 

 

Table 4. Estimated parameters for the stratified model with the 𝑪𝑭 value 

Parameter Estimate CF 

𝛽0̂ -5.5686 0.9996 

𝛽1̂ 1.7563  

𝛽2̂ 1.3282  

𝛽3̂ 1.1646  

𝛽4̂ 0.0983  

𝛽5̂ 0.7851  

𝛽6̂ 0.2840  

𝛽7̂ 0.7216  

𝛽8̂ 0.5759  

Notes: CF= Calibration factor 

 



 

Figure 3: Cure plot against segment length before stratification  

 

Figure 4: Cure plot against segment length after stratification 

 

 



4.3. Sub conclusion for addressing non-uniform underreporting of segment collisions 

The results show that the proposed modelling approach is effective in correcting for possible 

systematic model bias. Despite the non-uniform under-reporting for segment collisions, when the 

population is stratified such that a satisfactory CURE with respect to the predictor variable linked 

to under-reporting is obtained, the bias due to the non-uniform under reporting is corrected.   

5.  Data Issue C: Missing Minor Road Volumes and Use of Class as a Proxy Variable 

In modelling intersection collision counts in a street network, the major and minor traffic flow 

volumes constitute the primary input for the standard intersection model form. However, in the 

Winnipeg case, many intersections had only a major street volume with the minor street volumes 

missing or unavailable.  This typically leaves two options: these intersections are either rejected 

for modelling and screening or they are modelled together as one population now with only one 

street volume as the predictor variable. Simply removing the minor road volume as a predictor 

variable, however, results in high prediction errors which are largely attributable to the population 

non-homogeneity that arises due to collapsing together intersections of different functional 

classes into a single population for modelling. We introduce a new modelling approach that uses 

the functional class of the intersections as proxy for the missing street flow volumes. We compare 

the impact on predictive ability of this approach to the standard model approach. 

5.1. Methodology 

Let  𝑁𝑖  (𝑖 = 1,2,3 … … . , 𝑛) denote the predicted count of collision, 𝑉1 the minor street traffic flow 

volume,  𝑉2 the major street traffic flow volume, and  𝜀𝑖 the error associated with the model.  The 

errors of the model are assumed to have a negative binomial error structure. The form of the basic 

intersection model is shown below: 

𝑁𝑖 = 𝛽0 ×  𝑉1𝑖
𝛽1 × 𝑉2𝑖

𝛽2 + 𝜀𝑖, 

The estimable parameters of the model are  𝛽0,  𝛽1,  and   𝛽2.  The functional form of the model 

can be assessed using the cumulative residual plots developed by  (Hauer & Bamfo, 1997).  Other 

forms of validation checks are: (1) statistical significance of the estimated parameters, (2) 

parameter logic, (3) model deviance, and (5) model over dispersion.  The application of this model 

is valid if information for both minor and major street volumes are available.  When 𝑉1 is 

unavailable, a single model using only 𝑉2 for all intersections is sometimes used.  

The SPF can also be interpreted as an estimate of a best fit function that can be used to predict 

collisions for known traffic flow volumes. The precision of the estimated collision counts improves 

with increasing homogeneity in the traffic flow volumes. This level of homogeneity is reduced 

when an aggregate global model is considered for all intersections with only one street volume. 

Figure five shows an SPF function fit through a plot of all the intersection collisions. Residuals 

obtained are larger when considering the intersections together. The functional class approach 

disaggregates the model into sub populations, where the functional class is used as a proxy for 

the unknown traffic volume. 

 



Figure 5: Plot of all intersections against traffic flow volumes  

Traffic flow volumes are a function of the intersection class. For instance, collisions on Arterial-

Local (𝐴𝐿) intersections are generally higher than collisions on Local-Local (𝐿𝐿) intersections 

largely due to the fact that the traffic flow volumes at 𝐴𝐿 intersections are higher. In the functional 

class modelling approach the population of intersections with only one street volume are stratified 

according to their class, thereby inducing homogenous sub-populations for modelling. The model 

form is shown below,  

𝑁𝑖 = 𝛽0 ×  𝑉𝑖
𝛽1 × ((𝛽𝐿𝐿 × 𝐿𝐿) +  (𝛽𝐴𝐶 × 𝐴𝐶) + (𝛽𝐴𝐿 × 𝐴𝐿) + (𝛽𝐶𝐿 × 𝐶𝐿)) + 𝜀𝑖, 

where the condition   𝐴𝐿 + 𝐴𝐶 + 𝐶𝐿 + 𝐿𝐿 = 1   is always satisfied, and A denotes arterial, C 

denotes collector, and L denotes Local. 𝜀𝑖 is the error of the model which assumes a negative 

binomial error structure. The functional classes are either zero or one in the model structure. In 

the simple case where the intersection being considered is (𝐴𝐿), the functional class model 

reduces to 

𝑁𝑖 = 𝛽0 ×  𝑉𝑖
𝛽1 × ((𝛽𝐴𝐿 × 𝐴𝐿)) + 𝜀𝑖, 

where 𝐴𝐿 = 1 with 𝐴𝐶 = 0, 𝐶𝐿 = 0 and 𝐿𝐿 = 0. There is no limit to the number of functional classes 

that can be considered, so long as the form of the model is maintained the functional class model 

is still applicable. With the functional class approach the residuals decrease considerably.  If we 

think of the SPF as a best fit curve, then the functional class model considers four best curves 

instead of one for all the intersection collisions.  Ideally, the residual when only one best function 

is used is larger compared to when four different SPFs developed based on functional classes of 

intersections are used. Figure six below shows four different SPF graphs for the different 

functional classes considered.  The implication of the figure is an improved fit.     



Figure 6: Plot of all intersections against traffic flow volumes  

Young, Park and Eng (2012) uses the MPB, MAD and MSPE as criteria for evaluating the fit of 

an SPF. The baseline for objectively assessing the model performance is by comparing the 

predicted counts with the corresponding observed counts. Since the errors increase with the 

mean, relying on just this three criteria and the RMSE for model assessment may obscure our 

ability to ascertain the true magnitude of the model performance. As an additional criterion, we 

consider the mean absolute percentage error. Overall, five criteria were used to assess the 

model performance and determine the impact on predictive ability when the functional class 

model was introduced.  

1. The mean square prediction error, 𝑀𝑆𝑃𝐸 =  
1

𝑛
 ∑ (𝑁�̂� − 𝑁𝑖)

2𝑛
𝑖=1  

 

2. The mean absolute deviation, 𝑀𝐴𝐷 =  ∑
|𝑁�̂�−𝑁𝑖|

𝑛
𝑛
𝑖=1   

3. The root mean square error, 𝑅𝑀𝑆𝐸 = √ 
1

𝑛
 ∑ (𝑁�̂� − 𝑁𝑖)

2𝑛
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4. The mean prediction bias , 𝑀𝑃𝐵 =  
1

𝑛
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𝑖=1  

5. The mean absolute percentage error, 𝑀𝐴𝑃𝐸 =  ∑
|𝑁�̂�−𝑁𝑖|

𝑁𝑖

𝑛
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5.2. Results for Missing Minor Road Volumes and Use of Class as a Proxy Variable 

Table 5: Results of SPF fit comparing the aggregate model and functional class model  

Statistical 
test 

Basic model approach Functional class model approach 

𝐴𝐿𝐿 𝐴𝐶 𝐴𝐿 𝐶𝐿 𝐿𝐿 

𝑀𝑆𝑃𝐸 60.4681 59.7035 18.5869 5.7072 1.2916 

𝑀𝐴𝐷 5.2402 5.2913 2.9358 2.1288 0.9272 

𝑅𝑀𝑆𝐸 7.7761 7.7268 4.3112 2.3890 1.1365 

𝑀𝑃𝐵 -0.0675 -0.0717 -0.0089 0.0166 0.0090 

𝑀𝐴𝑃𝐸 1.0578 0.8850 0.7089 0.5857 0.2162 

Notes: MSPE=Mean square prediction error, MAD=Mean absolute deviation, RMSE=Root 

mean square error, MPB=Mean prediction bias, MAPE= Mean absolute prediction error, 

CL=Collector-local, AL=Arterial local, CL=Collector-local, LL=Local-local  

5.3. Sub-conclusions for Missing Minor Road Volumes and Use of Class as a Proxy 

Variable 

Table 4 summarizes the estimates of MAD, MPB, MSPE, RMSE and MAPE for both the basic 

model approach and the functional class model approach. Being a measure of model 

performance, the smaller the value of each of the evaluation criterion the better the model 

performance. Comparing the MAD, MPB, MSPE, RMSE and MAPE for the basic model and the 

functional class model, the table shows that for all the evaluation criteria considered, the functional 

class models demonstrated a superior performance over the basic model approach. This means, 

relying on an aggregate model which does not account for the class of the intersection to predict 

intersection collisions results in low precision predictions. When the functional class model is 

considered, the table shows very low values comparatively for each of the evaluation criterion 

suggesting the localized models for each class perform better. Overall, using the functional class 

of intersections as proxy for missing street volumes provides better and superior localized models 

for each functional class than a single aggregate model which collapses all intersections 

regardless of their functional class into one population. 

6.  Discussion and Conclusion 
 
This paper has demonstrated some ways that reliable models for confident decision-making can 
be built even when the input data is less than ideal. In the Winnipeg case, three data issues were 
encountered: uncertain traffic volumes, non-uniform collision under-reporting, and missing traffic 
volumes. Three corresponding techniques were used to address these issues: Monte Carlo 
simulations to check uncertainty multiples, breaking populations with cumulative residual plots to 
reduce model bias, and the use of functional class as a proxy variable in lieu of missing minor 
road volumes to reduce model error. In each case quantitative results demonstrate the improved 
confidence that can be placed in the decision-support models as a result of the analysis. For the 
uncertain traffic volumes, the Monte Carlo Analysis showed that model parameter uncertainty 
attributable to  volume measurement error is less than inherent paramater uncertainty for volume 
measurement erros of up to 30%. For the non-uniform under-reporting, model stratification using 
the CURE plots to discover population breakpoints reduced global model bias from 22% to 0% 
and almost eliminated local model bias. For missing minor road volumes, the technique of using 
functional class as a proxy variable reduced mean absolute deviations by almost 50% from 5.2 
with a model omitting the minor road variable to an average of 2.8 with a model incorporating 
class as proxy. 



With these and similar techniques depending on the data issue encountered, we suggest that 
confident decisions can be made with the best analytical tools despite input data limitations. 
Practitioners may often be faced with a decision about the maturity level of analytical tools they 
will employ to allocate road safety budgets. The highest maturity tools such as network screening 
using SPFs and Empirical Bayes techniques bring the promise of better road safety budget 
allocations and more lives saved, however, the tools have demanding input data requirements. 
Before deciding on a lower maturity level analytical tool – and correspondingly lower budget 
allocation effectiveness – due to input data concerns, we hope that practitioners can consider 
using these techniques to leverage the input data they have despite its limitations. 
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